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A theoretical model has been developed to predict the elastic constants of magnesium. The
energy density of the metal consisted of a volume~dependent term, an electrostatic term, and
a band-structure term which was derived from pseudopotential theory. The pseudopotential
used was the local one proposed by Ashcroft and used by Suzuki et al. in calculating the elastic

constants of the alkali metals.

There were two adjustable parameters.

One is the core radius

7. and the other is a shear-independent term adjusted to give equilibrium at the observed

atomic volume.

The calculations were carried out for five different core radii in order to de-
termine the 7, which gives the best agreement between theory and experiment.

Both the Har-

tree dielectric function and a modified dielectric function were used. The results were found
to be rather insensitive to whichever dielectric function is used. From a comparison of the
calculated elastic constants with experiment, it was found that the best agreement was obtained

for »,=1.358 a, (and the modified dielectric function).
however, over »,=1.38a, (and the Hartree dielectric function).

There was only a slight preference,
The core radius determined

from elastic-constant calculations was found to be in good agreement with the values obtained
by other investigators from a comparison of theory with experiment for electronic properties,

such as the resistivity of liquid magnesium.

Thus the same pseudopotential predicts both

mechanical and electronic properties of magnesium. Because magnesium exists in the non-
primitive hep structure, a macroscopic strain gives rise to interlattice displacements, i.e.,

internal strains.
density of the strained state to be a minimum.

The internal-strain parameter has been calculated by requiring the energy
It was seen that internal-strain contributions

to the Brugger elastic constants, although small, did improve the over-all agreement between

theory and experiment.

[. INTRODUCTION

Recently Suzuki et al. have used a pseudopotential
method to calculate the elastic constants of the al-
kali metals! (monovalent) and of aluminum? (triva-
lent), Their results are in excellent agreement
with experiment for the monovalent metals and in
fair agreement with experiment for aluminum. It
should be noted, however, that a complete set of
third-order constants has not yet been determined
experimentally for any of the alkali metals. Thus
Suzuki et al. could only compare their results with
the experimental values of the second-order con-
stants and of the hydrostatic-pressure derivatives
of the second-order constants. The calculated
third-order constants of aluminum could be com-
pared directly with the experimental values obtained
by Thomas, ?

It would be interesting to see how successful the
method of Suzuki ef al. is in predicting the elastic
constants of a divalent simple metal. A good can-
didate for this approach seems to be magnesium,
since it has no d electrons, and its ion cores are
known to be small. The choice of magnesium also
will introduce features that are absent from the
work of Suzuki et al. The simple metals which
they considered were cubic with one atom per unit
cell. Magnesium, however, crystallizes in the

| >

hep structure, which has a basis of two atoms. The
atoms in a hcp structure are not at centers of sym-
metry. Therefore elastic deformations will, in
general, induce internal strains, since the struc-
ture is nonprimitive. The internal strain is such
as to make the energy density a minimum for the
given external elastic strain; i.e., if E is the en-
ergy density, n the external strain, and w the in-
duced internal strain, then w is found from (8 E/
8w),=0. In addition, the method can be used to
calculate the equilibrium value of ¢/a.

Recently Cousins? calculated electrostatic and
repulsive ion-ion contributions to the elastic shear
constants of hexagonal metals for various c/a ra-
tios. In magnesium there is very little core over-
lap, and repulsive ion-ion effects may be neglected.
Cousins’s results are in exact agreement with our
electrostatic calculations if a sign is changed in
one of his results.® More recently, Cousins® and
King and Cutler” have employed pseudopotential
methods to calculate the three second-order shear
constants of magnesium. However, they did not
calculate the complete set of second- and third-
order constants. A comparison of their results
with ours will be presented at the end of this pa-
per.

In Sec. II, we discuss the strain parameters to
be used in the elastic-constant calculations. In Sec.
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III, a pseudopotential model is used to calculate the
second- and third-order elastic constants of mag-
nesium, and comparisons with the experimental re-
sults of the preceding paper® are presented. A sum-
mary and conclusions are given in Sec. IV,

II. STRAIN PARAMETERS

At T=0°K, and in the absence of zero-point vi-
brations, the elastic constants are related to the
energy per unit undeformed volume E through the

expression
"E )
* /n=0

c il (1)
#skimn (37741 377):1 anmn. *

The above elastic constant is of the type defined by
Brugger. ° 7;; is a component of the Lagrangian
strain tensor and is found as follows. If X is the
initial coordinate of a particle, and X' the coordi-
nate in the strained state, then 7;,=3(J;,J,, - 6;;),
where J,,=(0x,")/6x; and §,; is the Kronecker 6.
The subscript refers to the Cartesian component
of a vector, and repeated indices are to be summed.
A knowledge of the lattice energy E will thus pro-
vide the elastic constants upon differentiation with
respect to the appropriate strain parameters.

Experimental elastic constants are usually ex-
pressed in terms of the Brugger constants. How-
ever, to facilitate the calculations, strains similar
to those originally used by Fuchs!® are employed
here. This does not present any difficulty in com-
paring with experiment, since the Fuchs constants
are simply linear combinations of the Brugger con-
stants.

The strains to be used consist of a v strain, cor-
responding to a homogeneous expansion or contrac-
tion of the crystal, and of three volume-conserving
shear strainstobe called ¢, y, ande. These strains
offer two computational advantages over the
Brugger-type strains. The first advantage is that
when taking derivatives with respect to a shear
strain, oneneed not be concerned with energy terms
which depend only on volume. The second advan-
tage is that these strains reduce the number of
elastic constants for which internal-strain contri-
butions must be calculated. It will be seen that
internal strains occur only for the e strain. The
strain parameters are described as follows.

1. € Strain

The € strain contracts the hexagonal base uni-
formly and expands the ¢ axis such that volume is
conserved. Thus only the c¢/a ratio is changed:

=1+ )%, x=(1+e)V2x,, xi=(1+€)x;.
x; and x, are shown in Fig. 1; the prime refers to

the strained state.
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FIG. 1. Coordinate system for the hcp structure. X
is parallel to the ¢ axis, i.e., out of the paper. ¥ may
be written as 7 =32%, +} X;.

2. vy Strain

The y strain tilts the ¢ axis by an angle tan™y and
leaves the base undeformed. Volume is again con-
served:

’ 1 ’
X1=X1, Xg=Xat+YX3 X3=X3 .

3. e Strain

The ¢ strain expands the x; axis and contracts
the x, axis such that the basal area remains un-
changed. The ¢ axis is not strained and volume is
conserved:

-1/2 x.

x=(1+e)2 %, x3=(1+e) 2, X3=X3.

4. v Strain

The v strain contracts or expands all the axes
uniformly. Volume is not conserved, but the basal
plane retains its hexagonal shape:

1/3 1/3 ! 1/3

7 ’
X1=v X1, X2=0 X2,
The ratio of the volume in the strained state to the
volume in the unstrained state is simply v.

The relationships between the Fuchs constants
and the Brugger elastic constants for cubic crys-
tals have been discussed by Suzuki ef al.! The
relationships for hep structures are summarized
in Table I. In this table, as well as in the re-
mainder of this paper, the Voigt notation is used
to denote the Brugger elastic constants, i.e.,

Cijprte oo =CrJeeey

where jj’s and I’s are related by 11~1, 22~2, 33
~3, 23~4, 31~5, and 12~6,
Our choice of Fuchs constants is not unique, but
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TABLE I. Relationships between Fuchs and Brugger
constants for hep structures.
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represents all the independent second- and third-
order elastic constants of a hep crystal. It should
be noted that the €, ¢, and v strains commute; thus
the order in which they are applied is immaterial.
v, however, does not commute with € or e. The
order does not matter if one is consistent through-
out. When combining y with € or ¢, we have al-
ways applied y last.

IIl. PSEUDOPOTENTIAL MODEL

Following Suzuki et al.,'? the energy of the met-
al may be written as a sum of three terms: a vol-
ume-dependent term E,, which includes the Fermi,
exchange, and correlation energies; an electrostat-
ic term E., which is the Coulomb energy of posi-
tive point charges arranged on a lattice and embed-
ded in a uniform sea of conduction electrons; and
a band-structure term Egzg, which represents the
deviation of the electron energy from that of free
electrons. Throughout this work, all energies will
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be in units of rydbergs per electron and all lengths
in atomic units. The volume-dependent energy
may be written as

E,=0.6%%-0.916/7,-(0.115-0.0311ny,). (2)
7 is given by
t mi=vy/z, (3)
where V, is the atomic volume and Z the valence.
kp is the radius of the free-electron Fermi sphere
given by

k:=312Z/V, . (4)

According to the Ewald- Fuchs!! method, E, may
be written as

22/3(3>”3[ﬂ' (ﬁz ”>
E.= - %4 ¢-1/z;702'§3‘ m

Vg

=9 =2
5 (rR,+T| /)
tL Py T

2/3%2
+IE cos?(:q,-7 )dbo(-[/"T;l—’—)—B] . (9
In the above equation, ﬁ, is a lattice vector; 7 is
the position vector of the second basis atom; g, is
a reciprocal-lattice vector, and ¢, (x)=[;" dtf e,
The prime on a sum means the /=0 term is omit-
ted.

The perturbation or band-structure energy term
Egs is calculated by introducing a simple local
pseudopotential and applying second-order pertur-
bation theory. The pseudopotential to be used is
the one originally proposed by Ashcroft!? and Ash-
croft and Langreth!® and used by Suzuki et al.! The
effective potential vanishes inside the closed ion
core and is pure Coulombic outside the core. Egg
is then given by

’
BS =°%— };—’; ? n?cos?(3q - 7) cos?(gr,)
y en, kp)-1

e, kg &

q is a reciprocal-lattice vector, and 1=q/2kg; 7,
is the core radius of the ion, and e(n, k) is the
Hartree dielectric function given by

en, kp) =1+g(n)/21kp ay , G

where «a, is the Bohr radius and

1*—”4 (8)

1 1-n?
gn) =—+ T

né  2nd

In

a is found from first-order perturbation theory to
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be
a=4r7 . (9)

E, depends only on the atomic volume, and thus
this term only contributes to two Fuchs constants
8%E/9v% and 9°E/00°. All shear derivatives of E,
are zero. For a v strain, =03k, and »,
=o' 37, v derivatives of E, are easily performed.

The derivatives of E_ with respect to the Fuchs
strains are readily taken. Any lattice vector may
be written as (see Fig. 1)

= - - -
R, =0l1X,+ X5+ 13X, ,

where 1, +1,=even integer and x;=% V3 a, x,=3a,
and x3=c¢. Similarly, any reciprocal-lattice vec-
tor may be expressed as

ﬁ; =llal+lzaa+laaa;

with the same restriction on /;+7,. Here G,=7/x,,
Gy=1/x5, and G3=27/x;. For a given Fuchs strain,
one knows exactly how the lattice and reciprocal-
lattice vectors deform. For example, for a v
strain,

R'_,1/3% >1_ -1/3% ’_
R, =" R,, q;=v / d;, Vo=0vV,.

The prime denotes the quantity in the strained state.
For an ¢ strain,

Ry=0(1+€)V2% +,(1+ €)™V 2%+ (14 €) X, ,

4,/ =1,(1+ 6)1’261+zz(1+ €)l/? 62+13(1+e)" 63 ,
Vo=V, .

The expression for the band-structure energy is
a function of n and k. For a v strain, n does not
change, since

’ -1/3

=4 .Y 9_.9 _

T 2%y T2V 2,
For a shear strain, %k, does not change, since it
only depends on volume. Thus one need only take
derivatives of Egg with respect to n and kz. For
example, we have

9Eps _9Eps 9kp
9v dkp v (10

and

9Eps _9Egs 37

o€ am de (1)

It is assumed that the core radius 7, does not change
during deformation. In all band-structure sums,
we sum out to (I, 7,, I,) =(18, 10, 17), which cor-
responds to n~17.

As seen above, one knows how ﬁ, deforms under
a homogeneous deformation such as a Fuchs strain.

SUZUKI,
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However, the hcp structure is nonprimitive, con-
sisting of two interpenetrating hexagonal sublattices
that are separated by a vector 7, and one does not
know how 7 will deform. If the components of R,
deform as

(ﬁt,)i :Jik(ﬁl)k , (12)
then, for a general homogeneous deformation, 14
(Rj+7"); =iy (Ry+ P+ (W) . (13)

w is referred to as the inner displacement vector.
The homogeneous strain described by the matrix
Ji, has induced an internal strain between the two
sublattices. W is found by requiring the energy
density of the homogeneously deformed state to be
a minimum.

Certain deformations have the necessary sym-
metry so that there is no internal strain. Floyd
and Kleinman!® have shown that w vanishes for
strains of the ¢ axis and for strains which do not

distort the base from being a regular hexagon. They
have also shown that for a general strain, the vec-
tor 7 between the two sublattices will be such that

it tends to reequalize the nearest-neighbor dis-
tances. In terms of the matrix J;,, they have
shown that W has a component along the x, axis
only if J; #J,; that W has a component along the
xpaxis only if J,, # 0; and that wnever hasa component
along the x; axis.

All four of our Fuchs strains are such that J,,
=dJ5, =0, In addition the », €, and y strains do not
distort the regular hexagonal shape of the basal
plane, i.e., Jy;=J,. The only Fuchs strain which
will give rise to a nonvanishing internal strain is
the e strain, for which J;; #J5. W will then have
a component only along the x, axis.

Whén calculating an elastic constant involving
the e strain, it will be necessary to include the con-
tributions from w. For an e strain, the lattice and
reciprocal-lattice vectors will deform according to

ﬁ,’: L (1 e 2R+ 1, (1+ o)V 2Rp+ 15K,
a":ll 1+ e)'1/261+ I, (1+e)1/252+l363 ’

and
Falr e s w] g (L o) 1Ry Tats

where

2 1 " _> -
Ty=%xy, T2=0, Ta=3x,;, %=%,/|%]| .
Differentiations with respect to ¢ are readily tak-
en once w is known. Obviously w is a function of
e, so that one may perform a power-series expan-
sion:

w=Ae+Be?+ .. (14)
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It will be shown below that only the coefficient A is
needed in the calculation of second- and third-order
elastic constants.

If E(e, w) is the energy density, then

dE _(E) ,(2E) 2w
de _<8e w+(aw e de _E3+Ewwe ’ (15)

where the subscripts refer to partial derivatives.
As stated earlier, E, = (aE/aw)e must be zero for
all values of e.

Since E, =0, one must then have

d

2o Ew=0=Eoy+ By 0, . (18)

Equation (16) is identically zero for all e. Since
(w,), -o=A, one finds that

A=- (Eew/Eww)e=0 . (17)

Differentiating Eq. (15) with respect to ¢ and
setting E,, =0, one obtains
2
g—e—f— =E, +Egyw, (18)

Since the elastic constants are evaluated in the un-
strained state,

P2
(£2) -+ 4o (19)
The last term in Eq. (19) is the internal-strain con-
tribution to the Fuchs constant.

By differentiating Eqs. (18) and (16) with respect
to e, one obtains

d°E
de®

=Egee + 2Eeew We+Eeyy, w§+ Eop Wee (20)

0=E o+ 2E sy We+ B We+ By Wog - (21)

Multiplying Eq. (21) by w, and adding this to Eq.
(20) gives

E

- 2 3
dea - Eeee + 3Eeew we + 3Eeww we + Ewww we

+Wee (We Eypy+ Eg,) . (22)

But the coefficient of w,, is identically zero by Eq.
(16). Evaluating Eq. (22) in the unstrained state,
one finds that

¥
< 363 > - (Eeee)o + 3A(Eeew )0 + 3A2(Eeww )0 + Aa(Ewww)O .
0

(23)

Equation (23) is exact. One sees that only the
linear term of Eq. (14) is needed. The other elas-
tic constants involving e are d°E/dvde?, d°E/dede?,
and d°E/de d'yz. It can easily be shown that
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LCEN (5 0o+ 24(Eyud)ot AEupe)e,  (28)
W 0: Eyeelo+ Avae ot vww’/0 »

(EE ) - € s 24(Euu o 4Bl (25)
dede 0‘ €ee ewe /0 eww’/0

d°E
(W)oz (Eopylo+ A(E )y - (26)

The first term in each expression is the contribu-
tion to the elastic constant assuming no internal
strain, i.e., A=0.

There are one second-order (dzE/dez) and four
third-order Fuchs constants (4*E/de®, d°E/dvde?,
d°E/dede®, and d°E/de dy %) which involve internal
strain. When the Brugger constants are expressed
in terms of the Fuchs constants, it is seen that two
second-order Brugger constants (cy; and ¢,,) and
seven third-order constants (Cy;y, Cp3, C112, Cizs,
Ci13, Cias, aNd Cy55) involve internal strain,

Calculations have been completed for five values
of the core radius, namely, »,=(1.22, 1.34, 1.358,
1.38, and 1.50)a,. The value 7.=1, 38a, is near the
value of 1. 3%, determined by Ashcroft and Lang-
reth'® from a comparison of theory and experiment
for the resistivity of liquid magnesium. The value
7.=1.358a, was found by Shyu and Gaspari'® from
fitting the first zero of the Ashcroft pseudopotential
form factor to that of the Heine- Abarenkov “model”!?
pseudopotential. The other values of 7, were chosen
to provide a wide range of core radii to be used in
the later comparison of theory with experiment.

In addition to using the Hartree dielectric func-
tion, calculations have been performed using a
modified'® !8~?! dielectric function. The modified
function takes into account correlation and exchange
effects in the screening of the electrons. If one
defines H(g)=€(q)/[e(g)- 1], then for the Hartree
dielectric function

H=14+2nkpay/g(n) , (27)

where g(n)=is given by Eq. (8). H™ directly enters
Eq. (6) for the expression for Epg. For the modified
dielectric function, one has

H=1+21kgay/g(n) - ¢%/2(¢* + BRF%). (28)

Two forms of 8 were used: The first was introduced
by Sham'® and used by Shyu and Gaspari, 16+1%20
where B=1+2/(nkga,); the second form was used by
Wallace, 2! where B=27 kg ay/(0. 158+ mkpa,). The
elastic-constant calculations were found to be ex-
tremely insensitive to whichever form of g is used.
This finding is an agreement with the lattice dynamic
calculations of King and Cutler. ?

Using the experimental?? atomic volume of mag-
nesium, we have determined the equilibrium c¢/a
ratios for the five core radii. The results using
both the Hartree and the modified dielectric func-
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TABLE II. Equilibrium values of c¢/a and internal-
strain parameter A for various values of »,. The experi-
mental value of ¢/a for magnesium is 1.6228.* A is in
units of the lattice parameter a.

Ve c/a A
(units of @) Hartree Modified Hartree Modified
1.22 1.6413 1.6414 0.326 0.223
1.34 1.6337 1.6316 0.374 0.335
1.358 1.6327 1.6304 0.383 0.350
1.38 1.6315 1.6291 0.394 0.368
1.50 1.6259 1.6236 0.461 0.460

2Reference 22.

tions are presented in Table II. Each c/a was
found by numerically solving 8 E/de=0. The vol-
ume-dependent energy E, does not enter here. It
should be noticed that over our range of core radii
¢/a does not differ much from the ideal value of

1. 633. Thus the procedure will not be successful
when applied to a hcp metal such as zinc, for which
c/a=1.856.

Knowing c/a for each r,, we then calculated the
internal-strain parameter A discussed earlier.
Again only the Coulomb and band-structure energies
contribute here. The results are given in Table
II. In the one-orthogonalized-plane-wave (1-OPW)
approximation, for which the band-structure energy
is neglected, it is found that A=0. 85754, in agree-
ment with the value given by Floyd and Kleinman,
Inclusion of the band structure considerably reduces
the internal strain, as can be seen in Table II.

Account must be taken of another equilibrium con-
dition, namely, that 8£/3,=0. As will be seen short-
ly, the core radius which gives the best agreement
of the calculated elastic constants with experiment
is 7,=1. 358a,. Using this core radius, the value
of the atomic volume for which 9E/d,=0 was found
to be 30% lower than the experimental value. In or-
der to have equilibrium at the observed atomic vol-
ume, it is necessary to adjust one of the parameters.
Suzuki et al.,! as well as Ashcroft and Langreth, *
have chosen to adjust the parameter « of Eq. (6).
The same procedure is adopted here.

It will be seen that with »,=1. 3584, four of the
five second-order Fuchs elastic constants are in
good agreement with experiment. The other con-
stant (62E/84°) is only in fair agreement with experi-
ment; this is the only second-order constant which
contains a contribution from E,. Instead of adjust-
ing a, we have tried to adjust independently the
Fermi, exchange, and correlation energies, but
the results of these adjustments all resulted in a
poorer value for 8 2E/91% Since an adjustment is
necessary, the o adjustment seems best in that it
results in a better value for 8%E/9v%. The pseudo-
potential method sucessfully predicts the thirteen
second- and third-order elastic constants for which

AND GRANATO 4

there are no contributions from the volume-depen-
dent energy E,. The other two constants, namely,
92E /9 v? and 3°E/a v, do depend on E,. We are
thus in agreement with Suzuki et al. in supposing
that the reason for the failure of the binding energy
to be a minimum at the observed atomic volume is
mainly due to uncertainties in the volume-depen-
dent energy term E,.

The results obtained by requiring 3E/av=0 at
the observed atomic volume are given in Table III.
Since four second-order Brugger constants (all but
c4s) depend on 82E/90%, a comparison with experi-
ment is not shown for them. Such a comparison
would be distorted by the effect of an inaccurate
value for 82E/0v%. For the same reason, a com-
parison of the pressure derivatives of the elastic
constants is not given, since they are dependent
upon (82E/60%). (A fair comparison might be made
by using the experimental value of 82E/9¢° in the
determination of the second-order Brugger constants
and their pressure derivatives. Such a comparison
is given later. )

The purpose of Table III is to determine the core
radius 7, for which the calculated elastic constants
best agree with experiment. The results obtained
by using both the Hartree and the modified dielectric
function are listed. It can be seen that the results
are rather insensitive to whichever dielectric func-
tionisused. Kingand Cutler”have also found that the
choice of a particular dielectric function is not sig-
nificant. It appears that »,=1. 3584, (with the modi-
fied dielectric function) gives the best over-all
agreement with experiment, although the preference
over choosing 7,= 1. 384, (with the Hartree dielec-
tric function) is very slight. For »,=1.358a,, one
obtains a=27.91a?, compared to the theoretical
value of 4mr2=23.17a5. The agreement of a with
4772 is fair; a better expression for E, may improve
the agreement. Using ».=1. 358¢, and the modified
dielectric function, the binding energy E =-0. 886
Ry/electron, which is in reasonable agreement
with the experimental value of'® - 0. 890 Ry/electron.

The values in Table III include the contributions
from internal strain. So that one may see the ef-
fect of the internal strain on the elastic constants,
the calculated values found both by including and
neglecting internal strain have been listed in Table
IV. The values shown are those obtained by using
7.=1. 358a, and the modified dielectric function,
since the best agreement with experiment was ob-
tained with these parameters. It can be seen that
internal-strain contributions to the Brugger con-
stants are small, but do improve the over-all agree-
ment with experiment.

So that one may see the relative contribution of
the electrostatic and band-structure energy terms
to the elastic constants, the separate contributions
have been listed in Table V. The constants which
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TABLE IIl. Elastic-constant calculations using a pseudopotential method. Entries are in units of 10! dyn cm=2,
Calculated values
re=1.22a, 1.34a, 1.358a, 1.38a, 1.50a,
Har. Mod. Har. Mod. Har. Mod. Har Mod. Har. Mod. Expt. values?
2
g‘% 0.502 0.420 0.768 0.742 0.817 0.801 0.880 0.875 1.277 1.340 0.728
€
2
g—% 0.121 0.116  0.189 0.196  0.200 0.209 0.215 0.226 0.297 0.317 0.202
e
2
g—ﬁ 0.262 0.237 0.295 0.275 0.303 0.284 0.313 0. 296 0.392 0.386 0.382
2
%Y‘Ef: 0.091 0.088 0.162 0.171 0.174 0.186 0.191 0.205 0.292 0.320 0.198
2
aael;v -0.006 —-0.008 -0.009 -0.009 -0.009 -0.009 —-0.009 -0.009 -0.010 -0.009 —-0.002
cyy —0.98 -0.85 —1.16 -1.07 -1.20 -1.11  -1.26 -1.17 -1.63 -1.60 ~0.86
C333 -4.10 -4.14 -5.70 -5.99 -5.99 -6.32 -6.35 -6.73 -8.66 -9.31 —-7.26
Ci1t —-4,64 —4.64 -6.24 —-6.42 -6.50 -6.71 -6.83 -7.06 -8.63 -8.97 —-6.63
Ci1g -1.30 -1.15 -1.68 —-1.60 -1.76 -1.69 -1.87 -1.83 -2.71 -2.84 -1.78
Ci13 0.14 0.10 0.42 0.46 0.47 0.51 0.52 0.57 0.81 0.91 0.30
C929 -5.81 -5.66 -7.94 -8.05 -8.30 —8.46 —-8.76 -8.97 ~11.54 -12.05 -8.64
Ci23 -0.21 -0.12 -0.35 -0.30 -0.38 -0.33 —-0.42 -0.38 -0.71 -0.72 -0.76
Ciyq -0.31 -0.24 -0.39 -0.35 -0.41 -0.37 —-0.43 -0.40 -0.62 -0.63 -0.30
Ciss -0.30 -0.44 -0.47 -0.60 -0.50 -0.62 -0.53 -0.65 -0.67 -0.77 -0.58
C344 -1.25 -1.20 -1.76 -1.79 -1.85 -1.90 -1.96 -2.02 -2.64 -2.79 -1.93

2Reference 22.

have a contribution from the volume-dependent
energy term have not been listed. It can be seen
that 82E/9y% = ¢y is determined primarily from the
electrostatic energy, but for most of the other con-
stants the band-structure contribution is large.
This was not so in the case of the alkali' (Z=1) me-
tals. For aluminum? (Z = 3), however, the band-
structure effects were also found to be large. Har-
rison!” has also noticed the increase in band-struc-
ture contributions for higher valence. He has noted
that quantitative calculations become more difficult
for higher valence, since the results are increas-
ingly sensitive to errors in the band-structure en-
ergy. That this is true has now been borne out by
the elastic-constant calculations for the Z=1, 2,
and 3 metals. Agreement with experiment was ex-
cellent for Z =1 (alkali metals), good for Z=2 (Mg,
present work), and fair for Z =3 (Al).

If one used the experimental value of 92E/80%, in-
stead of the calculated value, together with the cal-
culated values of the four other second-order Fuchs
constants, the five second-order Brugger constants
listed in Table VI are obtained. Also listed are the
resulting pressure derivatives of the second-order
constants. For the latter, the calculated values of
the third-order Brugger constants were used (Table
IV). The agreement with experiment is very good for
the second-order constants and for dcgg/dF, but only

fair (~20%) for the other pressure derivatives. It was

found, however, that better (~10%) agreement of

these pressure derivatives with experiment could
be obtained by also using the experimental value

of 8°E/3v%. This is another indication that the vol-
ume-dependent energy term is not known as accu-
rately as the other terms.

So that one may see the effect of using different
pseudopotentials, in Table VII we have compared
our second-order shear constants with those cal-
culated by Cousins® and by King and Cutler.” Our
results are listed for 7. = 1. 3584, with the modified
dielectric function. Cousins’s results are obtained

TABLE IV. Internal-strain contributions to the third-
order elastic constants of Mg. Entries are in units of

10'2 dyn cm™2.

Calculated values

Without With Expt.

internal strain internal strain values?

Cy33 -1.11 -1.11 -0.86
C333 -6.32 -6.32 -7.26
Ci11 -7.31 -6.71 —6.63
Citz -1.35 ~1.69 -1.78
Cir3 0.12 0.51 0.30
Co29 —8.63 —8.46 -8.64
C193 0.05 -0.33 -0.76
Cras 0.03 -0.57 -0.30
Ciss ~1.02 ~-0.62 -0.58
C344 -1.90 -1.90 -1.93

2Reference 22.
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TABLE V. Contributions to the Fuchs elastic constants
of Mg. The constants involving the volume-dependent
energy term are not included here. Entries are in units

of 10!% dyn em™2,

Electro- Band- Internal-
static structure strain Calc. Expt.
contribution  contribution contribution value value®
2
%’% 1.306 ~0.505 0.801  0.728
’E 0.035 0.209  0.202
Q 0.303 -0.059 -0.035 . .
2
%Ez 0.170 0.016 0.186 0.198
2
:—g; 0.001 -0.010 -0.009 =-0.002
€
3
%5 3.10 -3.39 -0.29 -2.90
3
%—? 0.36 -0.43 0.32 0.25 0.40
e
3
aafvz -0.00 0.03 0.03 0.01
3
3
8356 —-0.44 -1.51 -1.95 -1.73
3
;fyz -0.06 -0.38 —-0.44 -0.29
3
'a?a';-:y‘z -0.84 0.15 -0.69 -0.81
3
81;2 -0.11 0.45 -0.40 -0.06 -0.06
3’E .
W -0.10 -0.49 0.17 —=0.42 -0.32
3'E
Zs_a? 0.32 0.77 0.33 1.42 1.60

*Reference 22.

from an optimized model potential with corrections
for exchange and correlation. The results of King
and Culter are obtained from afirst-principles nonlo-
cal pseudopotential. The experimental values listed
are the linearly extrapolated values at 0°K; they
are not the measured values at 0 °K, since the

TABLE VI. The second-order Brugger elastic constants
and their pressure derivatives. These values were ob-
tained by using the experimental value of 8%E/3v?. The
elastic constants are in units of 10'> dyn ecm™?, and the
pressure derivatives are dimensionless.

Calc. value Expt. value*
cy 0.686 0.666
ciz 0.268 0.262
Cy3 0.201 0.219
cu 0.186 0.198
C33 0.726 0.702
Css=%(6““clz) 0.209 0.202
dcy,/dP 1.40 1.60
dcgg/dP 1.36 1.37
dcyy/dP 5.19 6.23
dcys/dP 5.89 7.29

2Reference 22.

AND GRANATO 4

TABLE VII. Second-order shear constants of magne-
sium at 0 °K. Entries are in units of 10'? dyn cm=2, and
A is in units of the lattice parameter a.

Constant This paper Cousins King and Cutler Expt.
9°E/0e? 0.801 0.768 0.609 0.728
9%E/9e? 0.209 0.199 0.207 0.202
O°E/3y? 0.186 0.193 0.179 0.198
A 0.350 0.350

calculations have not included zero-point effects.
It can be seen that the Ashcroft potential gives as
good agreement with experiment as do more so-
phisticated potentials. Our value for the internal-
strain parameter is in excellent agreement with
that found by Cousins (Table VII).

IV. SUMMARY AND CONCLUSIONS

A pseudopotential model was used to calculate
the elastic constants of magnesium. The only ad-
justable parameters were the core radius », and
the shear-independent term «. The equilibrium
¢/a ratio was calculated and found to be very close
to the experimental value, and the internal-strain
parameter was calculated by requiring the energy
density of the strained state to be a minimum.

It was found that the energy density did not sat-
isfy the equilibrium condition 8E/3v =0 at the ob-
served atomic volume. To satisfy this condition,
it was necessary to adjust the volume-dependent
energy term. Specifically, the parameter @, which
arises from first-order perturbation theory, was
adjusted to obtain equilibrium,

Fuchs-type strain parameters were employed
in calculating the elastic constants. The results
are found to be rather insensitive to whichever di-
electric function (Hartree or modified) is used. The
calculated elastic constants are found to be in best
agreement with experiment for 7, = 1. 358¢, (and the
modified dielectric function), but there is only a
slight preference over 7= 1. 38a, (and the Hartree
dielectric function). It was found that internal-
strain contributions to the Brugger elastic constants,
although small, did improve the over-all agreement
of theory with experiment.

The band-structure energy was found to contribute
significantly to the elastic constants of magnesium,
for which Z=2. It was noticed, however, that band-
structure effects had been small for the alkali met-
als (Z=1), but large for aluminum (Z=3). The
agreement with experiment is excellent for Z=1,
good for Z =2, and fair for Z =3.

The core radius determined from elastic-constant
calculations is in good agreement with the value ob-
tained from calculations of electronic properties,
such as the resistivity of liquid magnesium. That
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the same pseudopotential is successful in predicting
both mechanical and electronic properties may give
one confidence for its use in other calculations.
The agreement with experiment of the calculated
elastic constants is found to be good. This compari-
son is a dctailed one, since elastic constants give
changes of the energy density not only with respect
to volume changes but also with respect to various
shear deformations. This suggests that the inter-
atomic potential may be known well enough to cal-
culate properties of imperfect crystals. Both
structural and thermal (phonon) defects are known
to be predominantly shear in character. 2

The results of this work represent the most
accurate agreement to date between theory and ex-
periment for the third-order elastic constants of
a metal. The results are also in good agreement
with calculations by Cousins and by King and Cutler,
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who used more sophisticated pseudopotentials, but
calculated only the three second-order shear elastic
constants. The only other metal for which a com-
parison of the complete set of third-order elastic
constants has been made is aluminum, and there
the agreement of theory with experiment is only
fair. Better agreement has been obtained for the
alkali metals, but the experimental data there is
not sufficient to allow one to make a comiparison

for the complete set of third-order constants.
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